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ABSTRACT

Recirculating, energy-recovering linacs can be used as driver accelerators for high power
FELs. Instabilities which arise from fluctuations of the cavity fields are investigated. Energy
changes can cause beam loss on apertures, or, when coupled to Msg, phase oscillations.
Both effects change the beam induced voltage in the cavities and can lead to unstable
variations of the accelerating field. Stability analysis for small perturbations from equilibrium
is performed and threshold currents are determined. Furthermore, the analytical model is
extended to include amplitude and phase feedback, with the transfer function in the feedback
path presently modeled as a low-pass filter. The feedback gain and bandwidth required for
stability are calculated for the high power UV FEL proposed for construction at CEBAF.



1. STABILITY ANALYSIS

The interaction of the beam with the cavity fields can be described, to a very good

approximation, by the following first order differential equation,
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where wy is the cavity resonant frequency, Q is the loaded @ of the cavity and Ry is the
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loaded shunt impedance Ry = (r/Q)Q. The beam in the cavity is represented by a current
generator. In arriving at (1) we assume that the cavity voltage, generator and beam current
vary as eth, where w is the rf frequency, and V,, fg and J, are the corresponding complex
amplitudes (phasors) in the rotating frame of reference, varying slowly with time. In this

equation J, (absence of tilde denotes the magnitude of the corresponding quantity) is equal

to the average beam current (in the limit of short bunches). Also ¥ is the tuning angle = -

defined by tan ¥ = —2@Q;{(w — wo)/wo. In steady-state the generator power is given by
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where 3 is the cavity coupling coefficient, and can be calculated from Qr = Qo/(1 + 3).
1A. Open Loop Analysis

As a concrete example, we take the energy-recovering driver accelerator design of
the CEBAF FEL [1, 2 and follow the formalism presented in [3).

The accelerator consists of an injector, a superconducting rf linac with a two—pass recir-
culation transport, which accelerates the beam to 200 MeV, decelerates it for energy recovery
through two passes, and transports it to a dump. Therefore, in this model, there are four
beams in the linac cavities at any time (two accelerating and two decelerating).

Two effects may trigger an unstable behavior of the system: a) Beam current loss which
may originate from energy offset which shifts the beam centroid off its central trajectory and
leads to beam scraping on apertures. b) Phase shift which may originate from an energy

offset coupled to the finite compaction factors (Mse) in the arcs.
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Substituting the above equations into the cavity equation (1), separating real and imagi-
nary parts, performing the linearization, and taking the Laplace transform of the equations,
we obtain two algebraic equations M A = 0, where M is a 2 x 2 matrix and A is the column
vector with 9(s) and ¢(s) as components.

The determinant of M is then set to zero and the two roots of s are examined. The real
parts of the roots will provide the damping or growth rates of perturbations. The imagtnary
parts of the roots will give the oscillation frequencies relative to the driving rf frequency.
If both roots have zero or negative real parts, the system is stable; otherwise the system is
unstable. Taking this into account, the two roots,of s are
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where

A = ILRp(hoC — b28)tan ¥ + tan? ¥

is a coupling term arising from the non-zero tuning angle ¥, and § and C are defined as
2
S = Z[Sin (¥; — U3) + sin (¥, — ¥y)]

f=1

C = Y [cos(¥; — Us) + cos (¥; — y)]

i=1
and ¥;, :=1,2,3,4 are the steady-state phases of the beam for passes 1,2,3,4 with respect
to the cavity voltage.

In the absence of coupling (A = 0) and (h2S5 + b:C) < 0 the system is stable for all values
of the beam current. For (725 +b,C) > 0 however, the system becomes unstable for currents

above a threshold current I,; given by

1
= Ro(haS + 5:0)

Iin

In this case the growth rate of the instability increases linearly with the beam current.
Coupling, in this parameter regime, can manifest itself as a frequency shift, and the system

remains unstable.



For (hyS + 5;C) < 0, if the coupling term is strong enough it can make the system
unstable. The growth rate of this instability however, is slow and approaches asymptotically
a constant value as the beam current increases.

For the CEBAF FEL design parameters, (h;S + 8,C) > 0, and the system is unstable
at Ip = 5 mA. The instability threshold is 300 zA and the growth rate of the instability is
s ~ 3 kHz at Jo = 5 mA. The threshold current for the longitudinal instability alone (b; = 0)
is 400 A, and for the beam loss instability alone (hy = 0) is 1.4 mA. Therefore, when both
instabilities are present the threshold is dominated by the longitudinal one, for 10~2 losses

produced by 1 mm offset.
1B. Analysis with Feedback

In the presence of feedback, the generator current fg is no longer constant, but it ,

assumes the form

[, = U0+ ALl 0+ AL(0)
where AL (1) is the additional signal providing amplitude feedback, and AW¥,(t) is the ad-
ditional signal providing phase feedback [4]. The transfer function in the feedback path is

presently modeled as a low—pass filter with gain G and roll-off frequency (27 T;)~!. Therefore

the Laplace transforms of AI;, and A, are
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where #(s) and $(s) are the errors in the amplitude and phase of the cavity field.

The analysis is similar to the open loop case, only now DetM=0 is a quartic polynomial
in s. We solved for the roots of s and next we summarize the results for the CEBAF FEL
design parameters.

With both longitudinal and beam loss effects present, (A2 S + 5,C) > 0, a gain of 26 with
roll-off frequency greater or equal to 3 kHz is sufficient to bring the system to the stability
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boundary, for small perturbations around the equilibrium, For the scraping instability alone,
the required gain is 7 with 1 kHz bandwidth, while for the longitudinal instability alone the
required gain is 13 with approximately 2 kHz bandwidth.

2, CONCLUSIONS

Stability analysis for small perturbations from equilibrium has been performed for

a recirculating linac FEL driver accelerator with energy recovery. The feedback character-

istics required to stabilize the system have been determined. For the CEBAF FEL design

parameters, modest gains at reasonable frequencies (well within the range of the CEBAF rf
control system) are required to stabilize the system.

Future directions include accurate modeling of the instabilities by direct numerical in-

tegration of the systems equations. This approach will allow incorporating into the model

nonlinearities from the saturation of the klystron and start up transients.
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